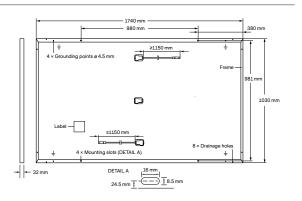
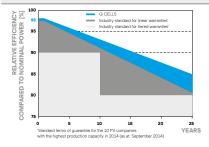


THE IDEAL SOLUTION FOR:



Rooftop arrays on residential buildings

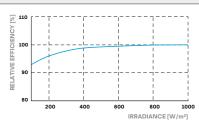
commercial/industrial buildings



ELECTRICAL CHARACTERISTICS

PO	WER CLASS			345	350	355	360
MIN	IIMUM PERFORMANCE AT STANDARD TE	ST CONDITIO	NS, STC¹ (P	OWER TOLERANCE +5W/-	-0 W)		
Minimum	Power at MPP¹	P _{MPP}	[W]	345	350	355	360
	Short Circuit Current ¹	I _{sc}	[A]	10.68	10.74	10.79	10.84
	Open Circuit Voltage ¹	V _{oc}	[V]	40.45	40.70	40.95	41.19
	Current at MPP	I _{MPP}	[A]	10.17	10.22	10.28	10.33
	Voltage at MPP	V_{MPP}	[V]	33.92	34.24	34.55	34.85
	Efficiency ¹	η	[%]	≥19.3	≥19.5	≥19.8	≥20.1
MIN	IIMUM PERFORMANCE AT NORMAL OPE	RATING CONE	DITIONS, NI	MOT ²			
	Power at MPP	P _{MPP}	[W]	258.4	262.1	265.9	269.6
nimum	Short Circuit Current	I _{sc}	[A]	8.61	8.65	8.69	8.74
	Open Circuit Voltage	V _{oc}	[V]	38.14	38.38	38.61	38.85
≘	Current at MPP	I _{MPP}	[A]	8.00	8.05	8.09	8.13
	Voltage at MPP	V _{MPP}	[V]	32.28	32.57	32.87	33.16

 $^1\text{Measurement tolerances P}_{\text{MFP}} \pm 3\%; I_{\text{SC}}; V_{\text{OC}} \pm 5\% \text{ at STC}; 1000 \text{ W/m}^2, 25 \pm 2\text{ °C}, \text{AM } 1.5 \text{ according to IEC } 60904 - 3 \cdot ^2800 \text{ W/m}^2, \text{ NMOT, spectrum AM } 1.5 \text{ According to IEC } 60904 - 3 \cdot ^2800 \text{ W/m}^2, \text{ NMOT, spectrum AM } 1.5 \text{ According to IEC } 60904 - 3 \cdot ^2800 \text{ W/m}^2, \text{ NMOT, spectrum AM } 1.5 \text{ According to IEC } 60904 - 3 \cdot ^2800 \text{ W/m}^2, \text{ NMOT, spectrum AM } 1.5 \text{ According to IEC } 60904 - 3 \cdot ^2800 \text{ W/m}^2, \text{ NMOT, spectrum AM } 1.5 \text{ According to IEC } 60904 - 3 \cdot ^2800 \text{ W/m}^2, \text{ NMOT, spectrum AM } 1.5 \text{ According to IEC } 60904 - 3 \cdot ^2800 \text{ W/m}^2, \text{ NMOT, spectrum AM } 1.5 \text{ According to IEC } 60904 - 3 \cdot ^2800 \text{ W/m}^2, \text{ NMOT, spectrum AM } 1.5 \text{ According to IEC } 60904 - 3 \cdot ^2800 \text{ W/m}^2, \text{ NMOT, spectrum AM } 1.5 \text{ According to IEC } 60904 - 3 \cdot ^2800 \text{ W/m}^2, \text{ NMOT, spectrum AM } 1.5 \text{ According to IEC } 60904 - 3 \cdot ^2800 \text{ W/m}^2, \text{ NMOT, spectrum AM } 1.5 \text{ According to IEC } 60904 - 3 \cdot ^2800 \text{ W/m}^2, \text{ NMOT, spectrum AM } 1.5 \text{ According to IEC } 60904 - 3 \cdot ^2800 \text{ W/m}^2, \text{ NMOT, spectrum AM } 1.5 \text{ According to IEC } 60904 - 3 \cdot ^2800 \text{ W/m}^2, \text{ NMOT, spectrum AM } 1.5 \text{ According to IEC } 60904 - 3 \cdot ^2800 \text{ W/m}^2, \text{ NMOT, spectrum AM } 1.5 \text{ According to IEC } 60904 - 3 \cdot ^2800 \text{ W/m}^2, \text{ NMOT, spectrum AM } 1.5 \text{ According to IEC } 60904 - 3 \cdot ^2800 \text{ W/m}^2, \text{ NMOT, spectrum AM } 1.5 \text{ According to IEC } 60904 - 3 \cdot ^2800 \text{ W/m}^2, \text{ NMOT, spectrum AM } 1.5 \text{ According to IEC } 60904 - 3 \cdot ^2800 \text{ W/m}^2, \text{ According to IEC } 60904 - 3 \cdot ^2800 \text{ W/m}^2, \text{ According to IEC } 60904 - 3 \cdot ^2800 \text{ W/m}^2, \text{ According to IEC } 60904 - 3 \cdot ^2800 \text{ W/m}^2, \text{ According to IEC } 60904 - 3 \cdot ^2800 \text{ W/m}^2, \text{ According to IEC } 60904 - 3 \cdot ^2800 \text{ W/m}^2, \text{ According to IEC } 60904 - 3 \cdot ^2800 \text{ W/m}^2, \text{ According to IEC } 60904 - 3 \cdot ^2800 \text{ W/m}^2, \text{ According to IEC } 60904 - 3 \cdot ^2800 \text{ W/m}^2, \text{ According to IEC } 60904 - 3 \cdot ^2800 \text{ W/m}^2, \text{ Acc$


Q CELLS PERFORMANCE WARRANTY

At least 98% of nominal power during first year. Thereafter max. 0.54% degradation per year. At least 93.1% of nominal power up to 10 years. At least 85% of nominal power up to 25 years.

All data within measurement tolerances. Full warranties in accordance with the warranty terms of the Q CELLS sales organisation of your respective country.

PERFORMANCE AT LOW IRRADIANCE

Typical module performance under low irradiance conditions in comparison to STC conditions (25 °C, 1000 W/m²).

TEMPERATURE COEFFICIENTS							
Temperature Coefficient of I _{SC}	α	[%/K]	+0.04	Temperature Coefficient of Voc	β	[%/K]	-0.27
Temperature Coefficient of P _{MPP}	γ	[%/K]	-0.36	Nominal Module Operating Temperature	NMOT	[°C]	43±3

PROPERTIES FOR SYSTEM DESIGN

Maximum System Voltage	$V_{\rm SYS}$	[V]	1000	PV module classification	Class II
Maximum Reverse Current	I _R	[A]	20	Fire Rating based on ANSI/UL 61730	C/TYPE 2
Max. Design Load, Push / Pull		[Pa]	3600/2660	Permitted Module Temperature	-40°C - +85°C
Max. Test Load, Push / Pull		[Pa]	5400/4000	on Continuous Duty	

QUALIFICATIONS AND CERTIFICATES

PACKAGING INFORMATION

IFC 61215:2016: IEC 61730:2016. This data sheet complies with DIN EN 50380. Certification Holder: Hanwha Q CELLS Australia Pty Ltd

Vertical	1791mm	1130 mm	1200mm

packaging

|--|--|

26 pallets 32 modules

Note: Installation instructions must be followed. See the installation and operating manual or contact our technical service department for further information on approved installation and use of this product.

Made in China

Hanwha Q CELLS Australia Pty Ltd

Suite 1, Level 1, 15 Blue Street, North Sydney, NSW 2060, Australia | TEL +61 (0)2 9016 3033 | FAX +61 (0)2 9016 3032 | EMAIL q-cells-australia@q-cells.com | WEB www.q-cells.com/au

